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Topics

• Bioinformatics

– Preliminaries

• Randomness in measurements

• Probability distributions

• Histograms and empirical cumulative distributions

• Sample statistics

– Hypothesis testing using 𝑡 tests

– Parametric and nonparametric classification
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Motivation

• High throughput quantitative molecular biology data 

– Cannot be processed or analyzed manually
• The data volume is well beyond the amount that can be handled 

manually
– Sequence data from many thousands of genes and proteins

– Signal transduction or gene transcription network maps

– Gene expression data from microarrays

– …

• Manual analysis cannot provide any sense of statistical significance 
useful for making inferences regarding the biological problem at hand

➔ Computer algorithms
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Preliminaries

• Randomness in measurements
– All measurements are subject to fluctuations

• Fluctuations in the entity to be measured
• Transient effects
• Thermal noise in the measuring instrument
• Quantization errors

– Such fluctuations alter the measured value of a parameter of 
interest from its “true” value

– In other instances, the parameter of interest fluctuates in and of 
itself from one instance to another 

– All these effects combine to produce deviations around some 
average



Preliminaries

• Example: Cell-to-cell variation of 
the amount of CheR in E. coli 
chemotaxis
– When methylated, the receptor 

complex X phosphorylates CheY that in 
turn triggers direction change

– The amount of CheR determining the 
steady state concentrations of the 
methylated receptor complex X 
changes from cell to cell

– As a result, some cells are more 
nervous and change direction more 
often, while others are much more 
relaxed

– All these effects combine to produce 
deviations around some average
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Preliminaries

• Random variables
– Technically:

• A random variable is a mapping from a probability space 𝑆, Ω, 𝑃 onto a measurable 
space 𝑆, Ω
– 𝑆 is the domain; also called the universal set of all possible outcomes/values

– Ω is the sigma-algebra associated with the domain

– 𝑃: Ω → [0,1] is the probability measure such that 𝑃 𝑆 = 1 and 𝑃 𝜔 ≥ 0 for all 𝜔 in Ω

– Practically:
• A random variable denotes the values of a parameter of interest measured under 

noisy or erroneous but generally stable conditions 

– The value of the random variable changes every time a measurement is made

– Ranges of possible values that a random variable can take are associated with a 
probability between 0 and 1
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Preliminaries

• Example:
– Consider a fair die

• A perfect cube with faces numbered from 1 
to 6

• When thrown, it has equal chance to land on 
its different faces

– Throwing of this die corresponds to a 
random experiment

– The measurement related to this random 
experiment is the reading of the number 
written on the face looking up

– Each throw corresponds to a distinct 
realization of the random experiment

• The measurement is simply the outcome of 
the experiment

– Probabilities are assigned to collections (or 
sets) of events

• Q: Suppose a fair die is thrown. What are the 
chances that the outcome will be

– Greater than or equal to 1?

– Less than 10?

– Less than 100?

– 1 or 2 or 3?

– 4 or 5 or 6?

– 1 or 3 or 5?

– 2 or 4 or 6?

– 1 or 2?

– 2 or 4?

– 5 or 6?

– 1?

– 2?

– 3?

– …

Source: https://www.123learning.co.uk/pack-of-10-dice



Preliminaries

• The odds of different possible 
outcomes are expressed in terms of 
probability distribution – mass or 
density – functions 
– Let 𝑋 denote the random variable associated 

with the throwing of a fair die

Pr 𝑋 = 1 = 1/6
Pr 𝑋 = 2 = 1/6
Pr 𝑋 = 3 = 1/6
Pr 𝑋 = 4 = 1/6
Pr 𝑋 = 5 = 1/6
Pr 𝑋 = 6 = 1/6

– Therefore, the probability mass function of 𝑋, 
denoted by 𝑝𝑋, is

𝑝𝑋 𝑥 = ቊ
1/6 if 𝑥 ∈ 1,2,3,4,5,6
0 otherwise
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Preliminaries

• The probability distribution of a random variable 
governs the odds of observing some specific values in a 
chance event

• In case the exact form of this probability is not known, it 
can be estimated 
– using many realizations of the corresponding chance event

• A most common way of estimating underlying probability 
distributions is by way of histograms
– The more realizations, the better the estimate

– Still, ambiguities abound
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Preliminaries

• Consider estimating the underlying probability distribution of a fair die 
experiment from 100 independent realizations
– The die is thrown 𝑁 = 100 times

– The numbers that come up each time are recorded

– Let 𝑁1 be the number of times the face with the number 1 comes up, and 
similarly for 𝑁2, 𝑁3, 𝑁4, 𝑁5, and 𝑁6

• Or, simply, 𝑁𝑥 for 𝑥 = 1,… , 6
• Clearly, 

𝑁1 + 𝑁2 + 𝑁3 + 𝑁4 + 𝑁5 + 𝑁6 = 100

– Define ℎ by

ℎ 𝑥 =
𝑁𝑥
100

, 𝑥 = 1,2,… , 6

– Then, ℎ is a histogram of the 100 realizations of the random variable 𝑋, and an 
estimate of 𝑝𝑋
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Preliminaries
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Preliminaries

• The die throwing experiment describes a discrete random variable
– The outcomes are elements in a finite set 1,2,3,4,5,6

• More interesting examples tend to assume values from a continuum
• The random variables associated with such parameters are called 

continuous random variables
– Continuous random variables possess similar definitions as the discrete random 

variables
• Probability measures, chance events, …

– But they differ in certain crucial ways, especially in how the probability distributions are 
defined

• Let 𝑋 denote the height of a freshman at IYTE in meters
• Q: What is the probability that a freshman at IYTE will be 1.70m tall, i.e., Pr 𝑋 = 1.70 =?
• A: ZERO!!!
• But, but, but… A freshman does have a certain height; if it’s not 1.70 EXACTLY, it is 

somewhere near…
• So what?
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Preliminaries

• The laws governing the chance structure associated with the values of 
continuous random variables are given in terms of set probabilities
– The probability of interest is not Pr 𝑋 = 1.70 , but Pr 𝑋 ≤ 1.70

• The cumulative distribution function of 𝑋, denoted by 𝐹𝑋 𝑥 , is defined as
𝐹𝑋 𝑥 = Pr 𝑋 ≤ 1.70

• Note that

– lim
𝑥→−∞

𝐹𝑋 𝑥 = 0

– lim
𝑥→∞

𝐹𝑋 𝑥 = 1

• In turn, the probability density function 𝑓𝑋 𝑥 is defined as the derivative of 
𝐹𝑋 𝑥 as

𝑓𝑋 𝑥 =
𝑑𝐹𝑋 𝑥

𝑑𝑥
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Preliminaries

• There are certain key probability distribution families that have 
been found very useful in describing the chance structures 
associated with real life random events
– Gaussian probability distribution function

• Bell curve

– Exponential probability distribution function
• Time-to-event

– Binary probability distribution function
• Heads or tails?

– Binomial probability distribution function
• How many heads or tails in so many repeats?

– Poisson probability distribution function
• How many heads or tails so far?



Preliminaries

• Gaussian probability 

distribution

– A continuous function with 

two parameters

• Mean 𝜇

• Variance 𝜎2

𝑓𝑋 𝑥 =
1

2𝜋𝜎2
𝑒

−
𝑥−𝜇 2

2𝜎2
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Preliminaries

• Exponential probability 

distribution

– Another continuous distribution, 

this time with one parameter

• The rate of change 𝜆

– This is the only memoryless 

continuous distribution

𝑓𝑋 𝑥 = 𝜆𝑒−𝜆𝑥
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Preliminaries

• Binary probability distribution

– A discrete distribution with only 

two possible outcomes
𝑝𝑋 "first outcome" = 𝑝
𝑝𝑋 "second outcome" = 1 − 𝑝

– The set of outcomes can be 

varied

• 0,1

• −1,1

• 𝐴, 𝐵

• …
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Preliminaries

• Binomial probability 

distribution

– A discrete distribution counting 

two possible outcomes in so 

many independent repeats with 
𝑝𝑋 "first outcome" = 𝑝
𝑝𝑋 "second outcome" = 1 − 𝑝

– The probabilities are then given 

by

Pr "𝑘 first outcome in 𝑛 repeats"

=
𝑛
𝑘

𝑝𝑘 1 − 𝑝 𝑛−𝑘
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Preliminaries

• Poisson probability distribution
– Another discrete distribution with 

one parameter
• Rate of change 𝜆

– Counts the number of times an 
event of interest occurs in a fixed 
period of time

𝑝𝑋 𝑥 =
𝜆𝑥𝑒−𝜆

𝑥!
– Interestingly, the time separation 

between successive events is 
exponentially distributed
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Preliminaries

• A sample set represents a collection 𝑥𝑗 , 𝑖 = 1,2,… ,𝑁 of values observed 
from a given random variable
– A collection of freshman heights from a randomly selected group of 10 first year students

– Sequence lengths of 10000 randomly selected human proteins

– Ages (in years) of 120 Alzheimer’s Disease patients

– …

• The distribution of values in the sample set can be characterized using
– Histograms

• 𝑁𝑘 represents the number of samples in an interval 𝑥′𝑘−1, 𝑥′𝑘 with 
𝑥′0 < 𝑥′1 < ⋯ < 𝑥′𝐾−1 < 𝑥′𝐾

• 𝐾 represents the number of bins

– Sample statistics 

• Sample mean 𝑚 =
1

𝑁
σ𝑖 𝑥𝑖

• Sample variance 𝑠2 =
1

𝑁−1
σ𝑖 𝑥𝑖 −𝑚 2



Preliminaries
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Above: The probability density function of some 

random variable 𝑋

Right: Histograms of 1000 realizations of 𝑋 with 

different bin sizes
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Preliminaries

• Remarks:
– Histograms are informative only when the bins are located and sized 

appropriately
• There is no sense in placing the bins on regions of zero occurrence

• If the bins are too small, the resolution will be high, but they will cover only a few 
samples producing large errors

• Larger bins will possess many samples providing a smaller error, but the resolution 
will be poor

– Sample mean 𝑚 and variance 𝑠2 (standard deviation 𝑠 too) describe 
where the samples are centered and how wide they are dispersed

• This is usually fine for unimodal distributions with a single peak

• On the other hand, this is terribly inadequate to represent multimodal distributions
– The samples may be clustered around a handful of values with little or no dispersion

– The mean will not capture this localization, and the standard deviation will indicate large 
dispersion when there is only very little
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Hypothesis Testing

• Suppose we are given two sample sets 
𝑥𝑖 , 𝑖 = 1,2, … , 𝑁𝑥

and 
𝑦𝑗 , 𝑗 = 1,2, … , 𝑁𝑦

– The heights of freshman students in EE and MB&G

– The sequence lengths of human and yeast proteins

– …

• The task is to decide if these two sample sets represent events with different characteristics
– These sample sets represent events with different characteristics if and only if the underlying 

probability distributions are different

• One option it to generate histograms for the two sets and see if they look different
– Feasible first-attempt, but difficult to infer a statistical significance measure

• Requires a measure of distance between histograms and permutation tests

• Another option is to assume these sample sets originate from distributions of the Gaussian 
family with potentially different parameters, and test to see if their parameters might be the 
same
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Hypothesis Testing

• Presumptions about the statistical nature of the observed data are tested against empirical 
evidence presented by the data

• Formally:
– A null hypothesis 𝐻0 is formulated postulating a statement

• the uninteresting explanation for the observed data

– A complementary hypothesis 𝐻𝑐 is automatically formulated postulating the invalidity of the 
statement

• the interesting/desired/hoped-for explanation 

– A probability 𝑃 is computed as the probability of observing the actual observed sample statistic 
under the null hypothesis

– If the probability is smaller than a prescribed significance threshold, the null hypothesis is 
rejected at the benefit of the complementary hypothesis

• Small 𝑃 values indicate that the sample statistic is unlikely to be observed if null hypothesis were true

• Typical 𝑃 value thresholds are 5% or 0.1%

• Note that this strategy requires a statistic to be computed from the data with a known 
distribution under the null hypothesis
– Any statistic can be used as long as its distribution can be guessed well



EE550 Week 11 25

Hypothesis Testing Using a Two-Sample 𝑡-Test

• Consider the following problem:

– Two sample sets 𝑥𝑖 and 𝑦𝑗 are provided representing the value 
observed for a parameter of interest from two different groups
• 𝑥𝑖 are the realizations of a random variable 𝑋

• 𝑦𝑗 are the realizations of a random variable 𝑌

– Let 𝜇𝑋 and 𝜇𝑌 represent the unknown means of the random variables 𝑋
and 𝑌

– The task is to test the validity of the null hypothesis 

𝐻0: 𝜇𝑋 = 𝜇𝑌
with a significance threshold 𝛼 ≪ 1

➔ two-sided two-sample 𝑡-test
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Hypothesis Testing Using a Two-Sample 𝑡-Test

• A 𝑡-test is a statistical comparison test that 

computes a probability for the null hypothesis 

given the data

• If the probability is smaller than the prescribed 

significance 𝛼, the null hypothesis is rejected in 

favor of the complementary hypothesis

• A few variants exist for the 𝑡-test

– Equal sample sizes, equal variances

– Unequal sample sizes, equal variances

– Unequal sample sizes, unequal variances

– Paired vs. unpaired

• The test calculates a 𝑇 statistic for each case, 

and computes its probability when the null 

hypothesis is true as the 𝑃 value

• For unequal sample sizes, equal 
variances:

𝑇 =
𝑚𝑋 −𝑚𝑌

𝑠
1
𝑁𝑋

+
1
𝑁𝑌

where

𝑚𝑋 =
1

𝑁𝑋
෍

𝑖

𝑥𝑖 , 𝑚𝑌 =
1

𝑁𝑌
෍

𝑗

𝑦𝑗

𝑠𝑋
2 =

1

𝑁𝑋 − 1
෍

𝑖

𝑥𝑖 −𝑚𝑋
2

𝑠𝑌
2 =

1

𝑁𝑌 − 1
෍

𝑗

𝑦𝑗 −𝑚𝑌
2

𝑠 =
𝑁𝑋 − 1 𝑠𝑋

2 + 𝑁𝑌 − 1 𝑠𝑌
2

𝑁𝑋 + 𝑁𝑌 − 2

and

𝐷𝐹 = 𝑁𝑋 + 𝑁𝑌 − 2



Hypothesis Testing Using a Two-Sample 𝑡-Test

• Procedure for testing for the equality of means:

1. Given the sample sets 𝑥𝑖 and 𝑦𝑗

2. Calculate the sample means and variances 

3. Calculate the 𝑇 statistic 

4. Compare the absolute value of the 𝑇 statistic to the critical value 𝑇𝑐 for which 

𝐹𝑡 𝑇𝑐 = 1 − 𝛼/2

where 𝐹𝑡 denotes the cumulative distribution function of a 𝑡 random variable with the 

corresponding degrees of freedom under the null hypothesis

OR

Calculate the 𝑃 value via

𝑃 = 2 ⋅ 1 − 𝐹𝑡 𝑇

and see if it is smaller than 𝛼
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Hypothesis Testing Using a Two-Sample 𝑡-Test

• Equality of the means example:
– Let the sample sets be given as

𝑥’s: {0.83, -0.09, -0.46, 0.05, -1.36, -0.21}

𝑦’s: {-0.08, 0.13, 1.94, 0.57, 0.27, 0.99, 0.41, 0.87, 0.35}

– Compute 

• The sample means

𝑚𝑥 = − 0.2067 and 𝑚𝑦 = 0.6056
• The sample variances

𝑠𝑥
2 = 0.5097 and 𝑠𝑦

2 = 0.3640
• The 𝑇 statistic

𝑇 = − 2.3778
– The 𝑃 value associated with this 𝑇 statistic is

𝑃 = 2 ⋅ 1 − 𝑃𝑡( 𝑇 ) = 2 · 0.0167 = 0.0334
– The critical value 𝑇𝑐 is

𝑇𝑐 = 2.1448
– The null hypothesis is rejected!!
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Hypothesis Testing Using a Two-Sample 𝑡-Test

• Example (continued):

– Now, let the sample sets be given as

𝑥’s: {0.83, -0.09, -0.46, 0.05, -1.36, -0.21}

𝑦’s: {-0.08, 0.13, 4.94, 0.57, 0.27, 0.99, 0.41, 0.87, 0.35}

– Compute 

• The sample means

𝑚𝑥 = −0.2067 and 𝑚𝑦 = 0.9389

• The sample variances

𝑠𝑥
2 = 0.5097 and 𝑠𝑦

2 = 2.3648

• The 𝑇 statistic
𝑇 = −1.6914

– The 𝑃 value associated with this T statistic is

𝑃 = 2 1 − 𝑃𝑡( 𝑇 ) = 2 · 0.0573 = 0.11
– This time, the null hypothesis is not rejected!!

– What is going on??
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Hypothesis Testing Using a Two-Sample 𝑡-Test

• Remarks:
– The 𝑡 test is susceptible to deviations from the presumptions

• Gaussianity of the underlying distributions

• Presence of outliers

– In addition, it determines whether there is reason to believe that the 
unknown means are different, but says little about how different they are

• Given sufficient number of samples, the statistical power may suffice to detect even 
the tiniest differences between the means

• Conversely, not detecting a difference of the means in a significant manner may 
simply be because the available data does not provide sufficient statistical power to 
detect a small difference

– Finally, it is helpless when the random variables are multivariate
• Hotelling’s 𝑇2 test can be used but is problematic
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Parametric and Nonparametric Classification

• Often, several parameters are measured jointly and recorded in experiments
– Heights, ages, and grade point averages of college freshmen
– Lengths and amino acid compositions of amino acid sequences of human proteins
– Gene expression of 40K genes in microarray experiments
– …

• Such multivariate data sets require multivariate data analysis methods
• A common task when multivariate data from two or more sample sets are 

present is whether classification rules that distinguish these sets from one 
another can be constructed
– If such a rule can be constructed, one can then determine 

• to which group a novel sample should belong
• which parameter values are critical to distinguish the samples of different groups and in what 

conditions

– Both these possibilities are absolutely vital to understand the biological problems in 
consideration
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Parametric and Nonparametric Classification

• Given training data, classifier construction strategies are 
studied under two general categories
– Parametric classification rules

• A parametric model is assumed for the underlying multivariate 
probability distributions of the different groups

• The parameters for these distribution models are estimated from 
available data

• An optimal decision boundary is deduced from the estimated 
probability distributions

– Nonparametric classification rules
• No parameter-based model is assumed
• Classification rules are constructed based on the similarity and 

distance structure between the available –manually annotated–
“training” samples
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Parametric and Nonparametric Classification

• Maximum likelihood classification
– Given the multivariate training data 

– Estimate the means and the covariance matrices for all sample sets
• The estimated sample distributions then become multivariate Gaussian distributions 

with the corresponding mean vectors 𝜇𝑖 and the covariance matrices Σ𝑖 as

𝑓𝑖 𝒙 =
1

2𝜋 𝑛 det Σ𝑖
𝑒−

1
2 𝒙−𝜇𝑖

𝑇Σ𝑖
−1 𝒙−𝜇𝑖

– Construct the classification rule that assigns a new sample to the sample 
set with the greatest value of the probability density function at the new 
sample

𝑓ML 𝒙 = argmax
𝑗

𝑓𝑗 𝒙
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Parametric and Nonparametric Classification
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Parametric and Nonparametric Classification

• Nearest neighbor classification:

– Store all the available data for training in a reference set 𝒙𝑗 , 𝑦𝑗 , 𝒙𝑗 ∈ 𝐼𝑅𝑛, 

𝑦𝑗 ∈ 1,2 with 𝑗 = 1,2,… , ℓ

– Assign the newly observed sample to the class with most similar samples

• Similarity computed in terms of a defined measure, or as inverse distance, or a 

weighted combination, …

– The classification rule is given by

𝑓NN 𝒙 = 𝑦𝑗0

where 𝑗0 = argmin
𝑗

𝜌 𝒙, 𝒙𝑗 , with 𝜌 𝒙, 𝒙𝑗 calculating the distance between 

samples 𝒙 and 𝒙𝑗
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Parametric and Nonparametric Classification
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Parametric and Nonparametric Classification

• Support vector machine classification:
– A maximum margin linear classifier is constructed to separate the samples 

of two different classes

– Nonlinear solutions are obtained by employing an inner product kernel to 
replace the original inner product between the samples 

• polynomial, Radial Basis Function, sigmoid, …

– Linear maximum-margin solution in the transform space corresponds to a 
nonlinear solution in the observation space

– For more details, see the literature
• Maximization of the margin using the method of Lagrange multipliers

• Karush-Kuhn-Tucker optimality conditions that produce the support vectors

• Generalization to multiple class problems
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Parametric and Nonparametric Classification
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Summary

• Bioinformatics uses statistical analysis techniques to 
address molecular biology questions emanating from 
quantitative data in large volumes
– The data collected from high throughput experiments can only 

be handled using computational methods

– These methods use different strategies to answer a variety of 
questions

• Whether the nature of measured parameters change from one group to 
another

• Whether it is possible to derive classification rules to distinguish the 
different groups based on the measured data


