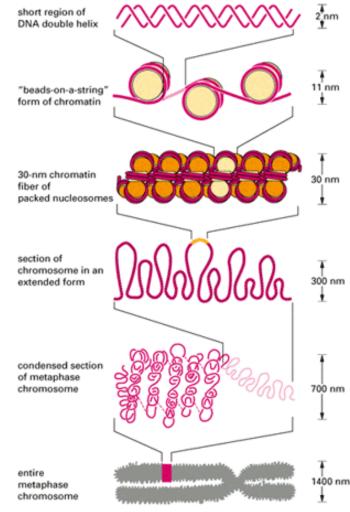
EE550 Computational Biology

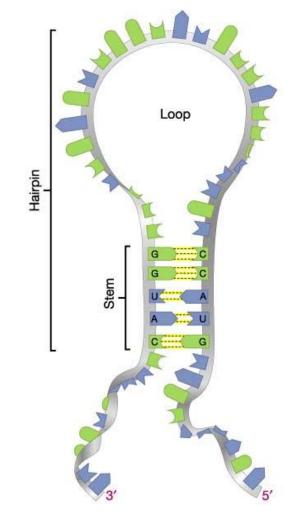
Week 2 Course Notes


Instructor: Bilge Karaçalı, PhD

Topics

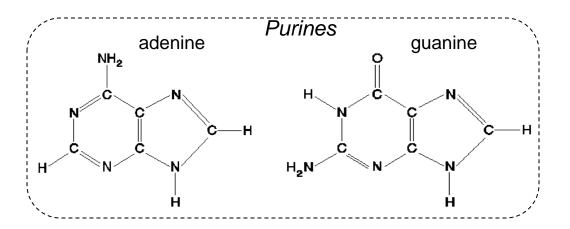
- Nucleic acid and protein structure
 - Nucleic acids
 - DNA
 - RNA
 - Proteins
 - Amino acids
 - Polypeptides
 - Biological information flow

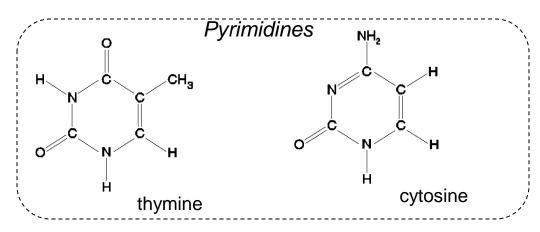
DNA


- Deoxyribonucleic acid encodes the genetic code
- It resides in the nucleus in the form of a paired linear sequence of four nucleotides
 - Adenine (A)
 - Guanine (G)
 - Cytosine (C)
 - Thymine (T)
- The linear sequence is formed by covalent bonds between successive nucleotides
- The DNA sequence has directionality
 - The carbon atoms in nucleotide bases are numbered
 - The covalent bond forms between the 3rd carbon of one base and the 5th carbon of another
 - The flow of the sequence is denoted from the 5' end (upstream) to the 3' end (downstream)

Source: http://library.thinkquest.org/C004535/media/chromosome_packing.gif

RNA

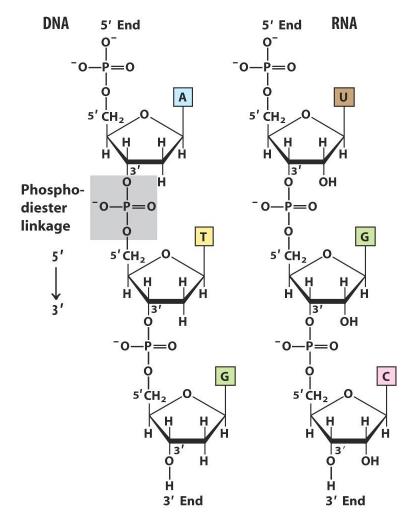

- Ribonucleic acid carries the genetic information from the nucleus to the cytoplasm
- It consists of a single strand of nucleotides
 - Thymine (T) is replaced by Uracil (U)
- It is synthesized by the transcription process that generates a complementary copy of a gene
 - Transcription produces the messenger RNA (mRNA) that encodes the proteins
- There are also non-coding types of RNA
 - Transfer RNA (tRNA)
 - Ribosomal RNA (rRNA)
 - MicroRNA (miRNA)
 - **—** ...



Source: http://www.uic.edu/classes/bios/bios100/summer2002/rna-loop.jpg

Nucleic Acid Structure

- Nucleotides are formed by sugar, phosphate and base
 - In the DNA, the sugar is the deoxyribose
 - In the RNA, the sugar is the ribose
 - The base determines the type of the nucleotide
- In the RNA, thymine is replaced by uracil that lacks the methyl group

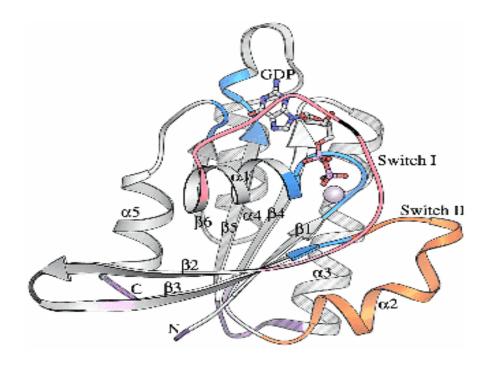


Source: http://hal.wzw.tum.de/genglos/asp/genreq.asp?nr=155

Nucleic Acid Chains

- Nucleotides in DNA and RNA are joined by phosphate ester bonds
 - between the phosphate component of one nucleotide and the sugar component of the next nucleotide (C-O)
- The phosphate binds the carbon no 3 in one sugar and the carbon no 5 in the other
- The directionality of the DNA (and the RNA) is therefore indicated by the carbon numbers left unbound at either end
 - The sequence is written from the 5th end to the 3rd end

Source: https://biochemix.wordpress.com/2014/04/17/nucleotides-and-nucleic-acids/


Base Pairing of Nucleotides in the DNA

- The DNA sequence is paired with its complementary DNA sequence via hydrogen bonds to form the double helix structure (Watson and Crick, 1953)
 - Adenine Thymine
 - Guanine Cytosine
- This helix structure provides the DNA with the necessary stability
 - The helical structure is due to
 - the sugar-phosphate bond angle,
 - the stacking of the hydrophobic bases, and
 - the interaction between the complementary strands
 - The genetic code must be maintained in a stable molecule (Q: Why?)

Source: http://fig.cox.miami.edu/~cmallery/150/gene/chargaff.htm

Proteins

- Proteins are building blocks of life
 - function as enzymes that catalyze or inhibit biochemical reactions
 - carry out signaling and molecular transport
 - construct supporting structures
- Proteins are constructed as a sequence of amino acid residues
 - Out of a total of 20 naturally occurring amino acids
 - Polypeptides, oligopeptides
- The shapes of the proteins as well as the underlying amino acid structure determines the function of the protein
 - The amino acid sequence determines the primary structure
 - The presence of structural motifs determines the secondary structure
 - α helix, β sheet
 - The spatial structure that the protein folds into determines the tertiary structure

Rab6 GTPase with GDP (part of the Ras superfamily)

Source:

http://www.cs.stedwards.edu/chem/Chemistry/CHEM43/CHEM43/GTP/Index.htm

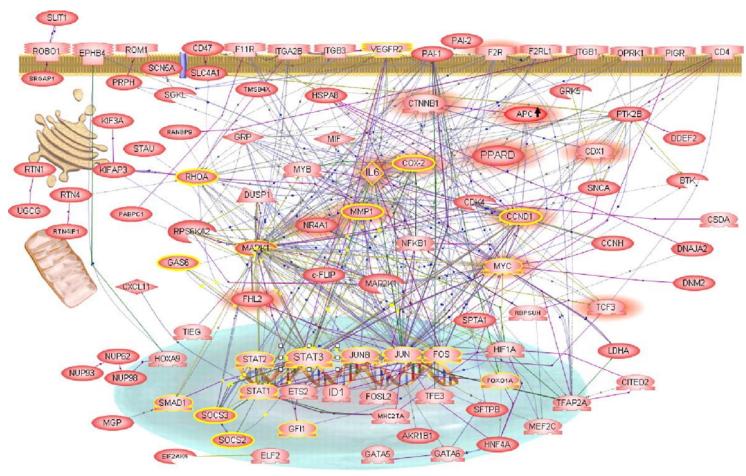
Carbohydrates


- Carbohydrates are complex sugar molecules
 - Monosaccharides, disaccharides, oligosaccharides, polysaccharides
- Polysaccharides are composed of a large number of monosaccharides
- In contrast to the sequential structure of proteins in terms of amino acids, polysaccharides are not sequential
 - The sequence of monosaccharides branch off frequently
 - This results in an exponentially increasing number of possible forms for a molecule with a given number of monosaccharides
- Polysaccharides play critical roles in almost all cellular processes from cell signaling to protein folding and stability

Source: http://www.chm.bris.ac.uk/motm/glucose/glucosejm.htm

Lipids

- Lipids comprise a vast group of molecules that are the esters that the fatty acids form with glycerole
- Glycolipids and phospholipids form the cell membrane
 - Phospholipids form the bi-lipid membrane
 - Glycolipids, much fewer in number, carry out essential molecular recognition tasks
- The phospholipids also operate as substrates to signaling reactions catalyzed by activated receptor proteins embedded in the cell membrane
 - The phospholipids are decomposed into their constituents
 - These constituents travel across the cytoplasm and trigger a variety of reactions
- Lipids also serve as energy reserves
 - Excess glucose is stored in fat tissue
 - Provide 6 times more energy than glucose
 - Fat storage is regulated by the liver

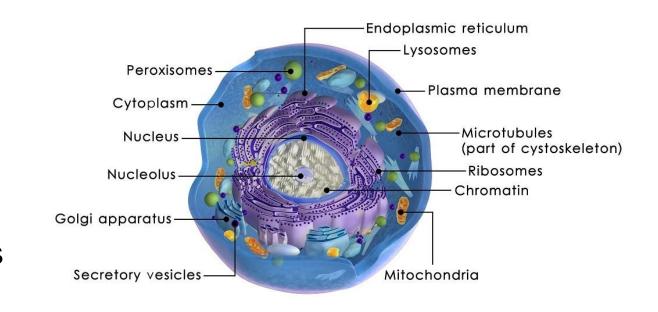

Phospholipid molecule

Source:

http://www.agen.ufl.edu/~chyn/age2062/lect/lect_06/4_18.GIF

Information Flow from Genes to Proteins

- Cells respond to their environment by initiating the synthesis of certain proteins and shutting the synthesis of others
 - Signaling molecules are picked up by receptor proteins embedded in the lipid membrane
 - These receptor proteins then create a cascade of reactions called the signaling pathway through phosphorylation and/or dephosphorylation reactions
 - The signal eventually reaches the nucleus, triggering the cell's response by changing its protein composition → synthesis and degradation

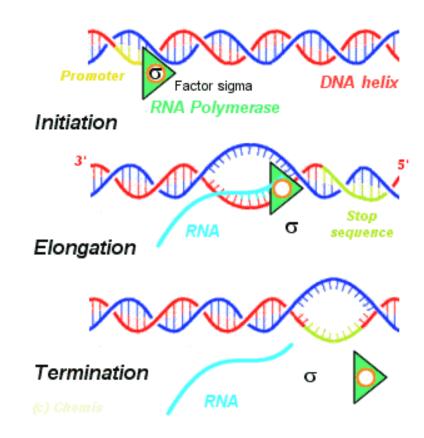


Angiogenic signaling network.

Source: http://www.pnas.org/content/pnas/104/31/12890/F2.large.jpg

Information Flow from Genes to Proteins

- Protein life cycle involves 6 processes carried out in succession
 - Transcription
 - Splicing
 - Translation
 - Post-translational modifications
 - Translocation
 - Degradation

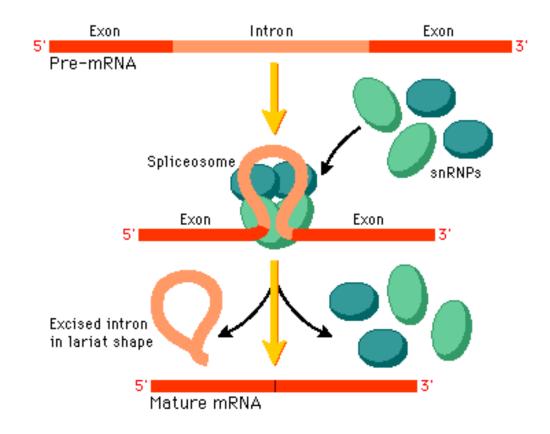


Source:

https://www.news-medical.net/life-sciences/Eukaryotic-and-Prokaryotic-Cells-Similarities-and-Differences.aspx

Transcription

- Transcription is the process by which the genetic code is copied into a complementary mRNA sequence
 - Genetic code is represented by genes along the DNA
 - Each gene has a beginning and an ending, as well as a promoter region
 - Transcription factors bind to the promoter region to initiate the expression of the gene
 - Repressor molecules may also bind to the promoter to block the expression of the gene
 - Between the beginning and the ending sites, some parts of the code are not intended to go into protein coding
 - Introns\Exons
- Transcription is carried out by the RNA polymerase enzyme
 - The enzyme binds to the DNA with the help of the transcription factors and unwinds the double helix for access to a single strand
 - It then travels along the DNA downstream synthesizing the RNA
 - It stops and leaves the DNA when it encounters the nucleotide pattern of a Stop signal

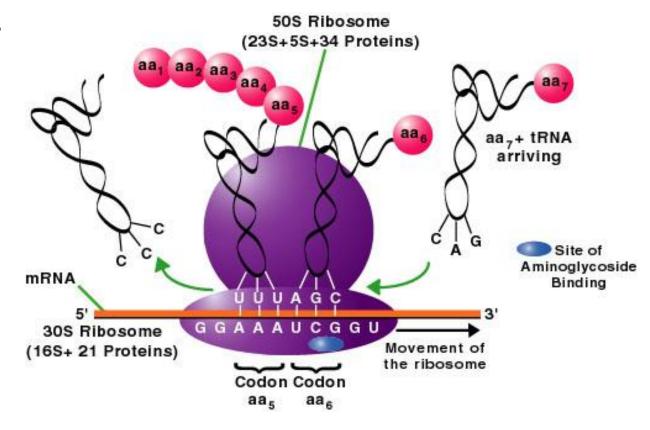


Source:

http://www.geneticengineering.org/chemis/Chemis-NucleicAcid/RNA.htm

Splicing

- The RNA polymerase synthesizes a precursor mRNA molecule
 - The pre-mRNA molecule has both introns and exons
- The process that removes the introns from the pre-mRNA molecule is called splicing
 - carried out by a complex of small ribonucleoproteins called the spliceosome
- As the introns are removed from the sequence of pre-RNA, the exons are stitched together to form the mature RNA
- The mature RNA then travels from the nucleus to the cytoplasm to carry out the protein synthesis message
- Alternative splicing refers to alternative ways in which a pre-mRNA molecule can be spliced into a different mRNA molecule
 - from ~40K genes to millions of proteins!!



Source:

http://www.cbs.dtu.dk/staff/dave/roanoke/genetics980408f.htm

Translation

- Translation refers to the synthesis of proteins according to the corresponding mRNA molecules
- Each nucleotide triplet along the mRNA sequence defines an amino acid
 - Each nucleotide triplet is termed a codon
 - Each of 64 possible codons encode for one of 20 different amino acids
 - The relationship is many to one
- The translation process is carried out in the cytoplasm by the ribosomes
 - The mRNA is grabbed by the ribosome
 - The tRNA collects the next amino acid encoded for by the next codon in the mRNA sequence
 - The polypeptide chain grows by the appending of successive amino acids
 - When a stop codon is encountered, the ribosome releases the mRNA and the polypeptide chain

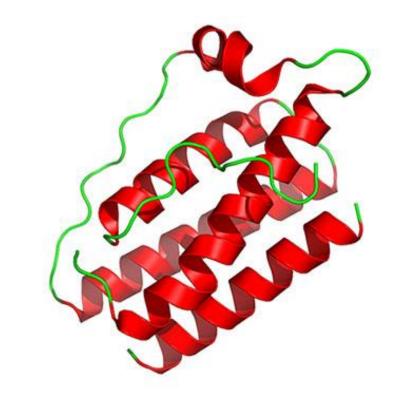
Source: http://www.scripps.edu/chem/wong/rna.html

Codons and Amino Acids

Amino Acid	Three Letter Code	Single Letter Code	Codons
Isoleucine	lle		ATT, ATC, ATA
Leucine	Leu	L	CTT, CTC, CTA, CTG, TTA, TTG
Valine	Val	V	GTT, GTC, GTA, GTG
Phenylalanine	Phe	F	TTT, TTC
Methionine	Met	M	ATG
Cysteine	Cys	С	TGT, TGC
Alanine	Ala	A	GCT, GCC, GCA, GCG
Glycine	Gly	G	GGT, GGC, GGA, GGG
Proline	Pro	Р	CCT, CCC, CCA, CCG
Threonine	Thr	Т	ACT, ACC, ACA, ACG
Serine	Ser	S	TCT, TCC, TCA, TCG, AGT, AGC
Tyrosine	Tyr	Υ	TAT, TAC
Tryptophan	Try	W	TGG
Glutamine	Gln	Q	CAA, CAG
Asparagine	Asn	N	AAT, AAC
Histidine	His	Н	CAT, CAC
Glutamic acid	Glu	E	GAA, GAG
Aspartic acid	Asp	D	GAT, GAC
Lysine	Lys	K	AAA, AAG
Arginine	Arg	R	CGT, CGC, CGA, CGG, AGA, AGG
Stop		-	TAA, TAG, TGA

Codons and Amino Acids

THE GENETIC CODE

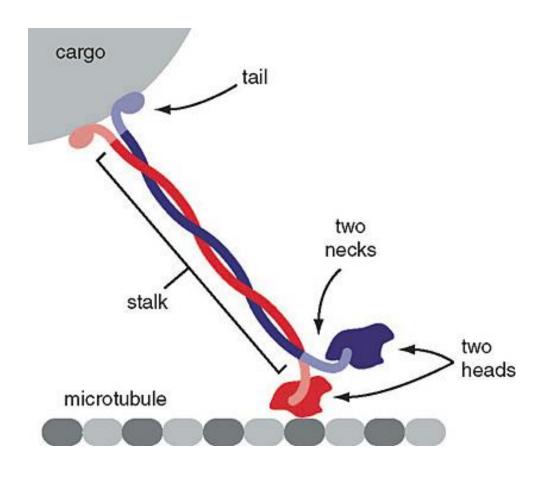

SECOND LETTER

		U	С	Α	G	
l		UUU) UUC)	ucu) ucc(_	UAU Tyr	UGU UGC)	5 0
	U	UUA } UUG }	UCA Ser	UAA <i>Ochre</i> (terminator) UAG <i>Amber</i> (terminator)	UGA <i>Opal</i> terminator UGG Trp	A G
LETTER	С	CUU CUC CUA CUG	CCU Pro	CAU His CAC GIn	CGU CGC CGA CGG	U C A G
FIRST (5')	A	AUU AUC AUA AUG Met (initiator)	ACU ACC ACA ACG	AAU Asn AAC Lys	AGU Ser AGC AGA Arg	U C A G
	G	GUU) GUC (Val GUA (initiator)	GCU GCC GCA GCG	GAU Asp GAC Asp GAA Glu GAG	GGU GGC GGA GGG)	U C A G

Source: http://www.msstate.edu/dept/poultry/pics/gnscht.gif

Post-Translational Modifications

- Once a polypeptide chain is synthesized, it undergoes a variety of operations that turn it into functioning proteins
- The operations may induce
 - the addition of extra molecules like sugars (glycosylation) and acetyl groups (acetylation)
 - For proper folding
 - structural alterations in the form of establishment of di-sulfide bonds
 - Again, for proper folding
 - the chemical changes at the amino acid level like deamination (glutamine to glutamic acid or asparagine to aspartic acid) or citrullination (arginine to citrulline)
 - cleaving to generate functioning units from non-functioning peptide chains



Leptin protein complex

Source: http://www.3dchem.com/molecules.asp?ID=154

Translocation

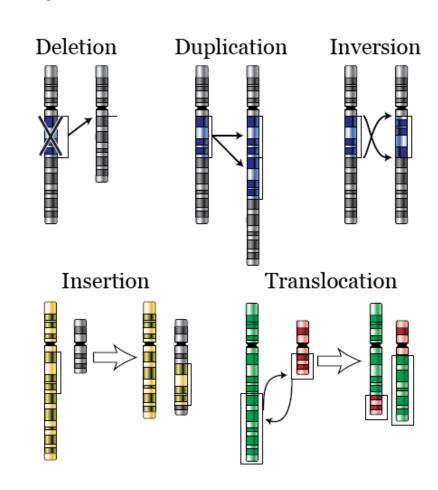
- The cell is composed of many compartments specialized to perform specific tasks
- The synthesized proteins are taken to the compartments for their functional specialization via molecular transport mechanisms
- Molecular transport inside cells are carried out by cargo proteins
 - Cargo proteins are equipped with a molecular sack suitable for fetching the protein to be transported
 - They also have a pair of extensions (head) that move the cargo proteins along microtubules all the way to their target locations

Source: http://news-service.stanford.edu/news/2003/december10/gifs/Kinesin_Proof2.jpg

Protein Degradation

- Proteins carry out highly specific functions in cells
- The amounts of different proteins are adjusted to match the transient needs of a cell's biomolecular mechanism
- This requires not only the synthesis but also the removal of the proteins that are no longer needed from the intracellular environment
- The process that eliminates proteins is termed protein degradation
- Protein degradation is carried out in subcellular organelles called lysosomes
 - The excess protein amounts are identified by the molecular mechanism via specific proteins that label the excess proteins for degradation (a.k.a. ubiquitination)
 - The proteins marked for degradation are taken to the lysosome by the molecular transport mechanisms
 - In the lysosome, polypeptide chains are hydrolyzed and decomposed into their constituent amino acids

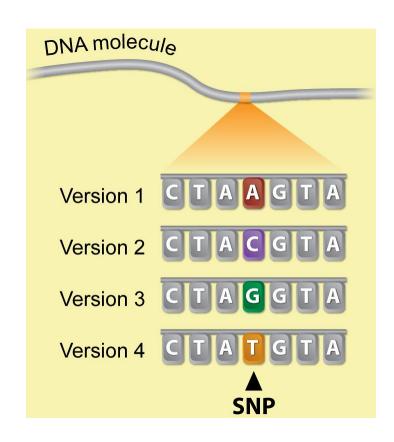
Illustration: The Inner Life of the Cell



Gene and Protein Expression

- Protein expression is the term used to cover the steps from transcription to post-translational modifications
- Gene expression refers to the synthesis of mRNA after splicing
 - Hence, gene expression is an intermediary to protein expression
- The expression levels of proteins in a cell characterize the reactionary effort of the cell to its
 environment
 - Intracellular environment
 - Cellular metabolism
 - Extracellular environment
 - Cell-to-cell signaling, hormonal signaling, etc.
- Measurement of protein expression levels are extremely problematic
 - Proteins are typically identified via mass spectroscopy techniques that identify the expression levels of a known set of proteins
 - The proteins that may be critical for the biological hypothesis in consideration may not be known a priori
 - Furthermore, the expression levels required for activity of certain proteins may be lower than the sensitivity of mass spectroscopy
- In contrast, measuring gene expression can be achieved in a high-throughput manner using DNA microarrays
 - The expression levels of hundreds of thousands of gene probes can be assessed in a single run
 - On the downside, issues with accuracy, comparability and noise are abound

DNA Sequence Analysis


- Genetic variation
 - Genetic variation is essential for the ability of organisms to adapt to changing environmental conditions
 - Different genotypes achieve different genetic fitness resulting in different proliferation rates
 - Gradually more fit genotypes become to dominate the population
 - Genetic variation results from various stochastic processes
 - Genetic mutations
 - Insertion
 - Deletion
 - Inversion
 - Translocation
 - Duplication
 - Sexual reproduction

Source: https://www.ck12.org/biology/mutation/lesson/Mutation-Types-BIO/

Example: Single Nucleotide Polymorphisms

- A single nucleotide polymorphism is an alterations of just one base pair at a specific DNA position
 - Also termed point mutations
- SNPs are inherited in part by the descendants of the individual
 - Some from the mother, rest from the father
- In different individuals, observing the same set of SNPs indicates common family lineage
- The odds of observing several different SNPs in two unrelated individuals drops sharply with increasing number of SNPs
 - Hence the strength of DNA evidence in crime scene investigations

Source: https://learn.genetics.utah.edu/content/precision/snips/

Protein Sequence Comparisons

- Mutations in the DNA sequence implicate alterations in the proteins encoded by the corresponding genes
 - Alteration of a single nucleotide <u>can</u> replace an amino acid with another without affecting the remaining sequence
 - Deletion of a single nucleotide alters the corresponding amino acid as well as all those that follow
- Protein shape and function are governed by its amino acid sequence
 - Mutations that cause alterations in the sequence affect the protein function
 - Cancer is linked with hyper-activity of growth factors of inhibition of tumor suppressor proteins
 - Sickle cell disease is due to the replacement of a single nucleotide, causing a change in a single amino acid in the sequence of the components of the hemoglobin complex, in turn reducing its oxygen carrying capacity
 - Proteins with similar sequences are likely to carry out similar functions
 - Protein families possess preserved sequence motifs
 - Presence of these motifs in a newly sequenced protein signals its membership in the corresponding protein family

Example: Protein Sequence Alignment

- Similarity of the amino acid sequence indicates similarity of the protein function
 - Orthologs: Proteins whose sequence is largely conserved across different species
 - Paralogs: Proteins with similar sequences within the same genome, indicating common origin
 common origin → homology
- In order to assess the sequence similarity of two different proteins, sequence alignment procedures are used
 - The alignment of two sequences requires inferring the proper amino acid replacements and deletions to arrive at a minimally extended common sequence
 - Replacement likelihood of individual amino acids can be assessed via 20 by 20 replacement matrices
 - Bits of amino acid sequence segments missing in the other protein are accounted for by unknown sequence stretches
 - Dynamic programming provides optimal alignments
 - Feasible alignments are achieved by suboptimal but fast algorithms

Summary

- The molecular machinery in living cells operates as a tightly regulated and finely tuned system of many components
- Analyzing this massively parallel system requires elucidating
 - Protein-protein interactions
 - Protein-DNA interactions
 - Enzymatic activity for glycosylation, acetylation, phosphorylation, ...
- Numerically efficient biomedical signal processing algorithms are in need
 - Statistically viable predictions
 - Using incomplete and potentially misleading biological data