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Outline

« Comparing univariate cell distributions
— Earlier methods

— Maximum positive difference method and
Overton cumulative histogram subtraction

— Super-enhanced Dmax subtraction
— The Kolmogorov-Smirnov algorithm

Week 6



Motivation

Flow cytometry aims to characterize cells in a population that differ
from one another in terms of their biomarker profiles

— Different cells possess different biomarkers (receptors) suitable to their
role in the larger organism

A critical component to this aim is to identify the cells that possess a
specific biomarker, termed as positives, against the others, termed
as negatives

Given two sample distributions where one is the control dataset of
negatives and the other a test dataset, the question is :

Can we identify the cells that are positive in the test dataset?

Note that an answer to this question requires the delineation of a
region on the fluorescence intensity scale associated with the
positive cells

A related, but simpler question is:
Can we predict the fraction of positive cells in the test dataset?

Week 6 3



Earlier Methods

* Adaptive thresholding at a fixed rate of
background detection:

— Tantamount to constant false alarm rate detection
rule in detection

— A threshold is determined on a control dataset of
background fluorescence

 Typically, the threshold “detects” 2% of the control cells
as exhibiting positive fluorescence

— The threshold is then applied to the dataset of
interest to identify the positive cells

* And the percentages thereof
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Earlier Methods

* Adaptive thresholding at a fixed rate of
background detection (continued):

— Mathematically, using

e P.,.;:(1): The empirical cumulative distribution of the
control dataset at the intensity level i

e P...:(i): The empirical cumulative distribution of the test
dataset at the intensity level i

— A threshold T is identified such that
Pcont(T) = 0.98

— The percentage of the positive cells in the test
data is then given by

100(1 = Peope(T))

Week 6 5



Earlier Methods

« Toy example:

Control dataset of
10000 cells

Test dataset of 10000
cells

A fraction of 0.50 of
the test dataset drawn
from the same
distribution as the
negatives of the
control dataset

The remaining fraction
of 0.50 drawn from a
distinct distribution,
and represent the
positives

contral dataset cell count

test dataset cell count
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Earlier Methods

« Channel-by-channel subtraction:

— Subtracts cell counts in each fluorescence channel
(i.e. level) of a control histogram from those in a test
histogram

* The two histograms are normalized to have equal cell counts
by a scalar normalizing factor

— The channels with negative results are set to zero

— The channels with positive counts characterize the
fluorescence intensities with positive cells in the test
histogram

— The ratio of total (positive) differences to the test cell
count calculates the percentage of positive cells

Week 6 8



Earlier Methods

» Channel-by-channel subtraction (continued):

— Mathematically, using

e p.ont(i) representing the normalized cell counts in the control
dataset with intensity i

e p:ost (1) representing the normalized cell counts in the test
dataset with intensity i

such that
Pcont(i) — ngcont(]') and Ptest(i) — 26 ptest(j)
— Letting
R = {ilptest(i) > pcont(i)}
— The percentage of positive cells is given by

100 Z(ptest(i) _ pcont(i))

IER
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Earlier Methods

after setting the negatives to
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Method of Maximum Positive

Difference

* This method identifies the largest difference
between the control and test cell counts with
intensities greater than equal to a threshold
— Given a threshold intensity level, the positive cells

are those that have fluorescence intensity greater
than or equal to that level

— The difference between the positive cell
percentages between the test dataset and the
control dataset can be computed for each
threshold

— Varying the threshold, the level providing the
largest difference can be identified
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Method of Maximum Positive
Difference

* Mathematically,

— For a given threshold T, the difference in
consideration is

(1 — Prest (T)) — (1 — Peont (T)) = Peont (T)'Ptest (T)
— The maximum is obtained at the threshold T*
defined by

T = argmﬁx(Pcont (T)=Ptest(T))

— The percentage of the positive cells is then given
by
100(Pcont(T*)_Ptest(T*))
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Method of Maximum Positive
Difference

the fraction of positives is 0.4757
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Overton Cumulative Histogram
Subtraction

« This method refines the channel-by-channel
subtraction
— Straightforward subtraction finds the channels with positive
or negative differences
« Though the negative differences are replaced by zeros
— But the ultimate goal is to find a threshold fluorescence

intensity level (i.e. channel) to identify the fluorescence
region associated with positive cells

« as distinct from the negatives

— So the method packs the negative differences onto the
positive differences observed in the lower channels

— Once finished,
 residual negatives are set to zero, and

» the sum of the positive differences computes the fraction of
positives in the test dataset
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Overton Cumulative Histogram

Subtraction

* Mathematically:

— The original difference p;pst (i) — Peont (i) 1S
modified so that

® Piost (1) — Prone (1) is zero for i < T for some value T,
and

® Diest (1) — Peone (1) is positive fori > T
— This provides a best-guess estimate for the

threshold T':

* In the original case, earlier positive differences can be
followed by negative differences due to noise

« After the “correction,” the differences are idealized so
that the difference is always positive fori > T

— No positive differences are followed by negatives
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Overton Cumulative Histogram
Subtraction
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Super-Enhanced D,,,, Subtraction

 The D, method:
— Technically, D, is defined as
Dmax = ml.aX(Pcont(i) — Prest (1))

where P, (i) and P,,,,;(i) are the cumulative
distributions of the test and the control datasets,
respectively, as before

— The idea is based on the observation that D,

estimates the fraction of positive cells in the test
dataset

« Assuming that the positive and negative cell fluorescence
distributions are distinct, Py, (i) — Psese (i) is maximal when

all the negatives and none of the positives are covered in the
interval [0, {]

» Errors accumulate when the distributions overlap
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Super-Enhanced D,,,, Subtraction

 The enhanced D,,,, method:

— The original D,,,x method tends to underestimate the actual
positive percentage in the test dataset, especially with non-zero
overlap between the positives and the negatives

« Q: Why?
(Hint:(());)nsider what D, corresponds to in a plot of P, (i) versus
PCOTLt l

— A correction can be obtained by scaling it using the value of the
cumulative distribution of the control dataset at the
corresponding fluorescence intensity

— Mathematically, this prescribes using
100 Dimax

PCOTlt (T)
to compute the positive percentage where

T = argmiaX(Pcont(i) — Pregse (1))
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Super-Enhanced D,,,, Subtraction

* The super-enhanced D, subtraction:

— It can be shown that the actual expression for the
positive fraction is equal to

Dmax + Ppos (T)
Pcont (T)

where

Piest (T) = Ppos (T) + Pneg (T)
* Hence, as T grows large, D,.x goes to zero, P.,,,:(T)

goes to one, and the ratio above converges to the
fraction of positives in the test dataset

— Further correction on the enhanced D«
subtraction method entail estimating P,,s(T)
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Super-Enhanced D,,,, Subtraction

* The super-enhanced D, subtraction (continued):

— Given the fluorescence intensity T at the maximum
difference

— Suppose new cumulative distributions are formed by
limiting the range of fluorescence intensities to within [0, T

PCOTlt(i)
pP...(i) =
cont PCOTLt (T)
and
Ptest(i)
P/, (i) =
rest Prest(T)

— Now, re,peating the enhanced D, subtraction method
using P;,,:(i) and P;,.. (i) provides a maximum difference
of D' at T’

Week 6 20



Super-Enhanced D,,,, Subtraction

* The super-enhanced D, subtraction (continued):
— Furthermore, the fraction

!
D max

P,COTlt (T,)

estimates P, (T)
— Using this estimate in the earlier expression provides

D’max
Dmax + P’COTlt (T’)
PCOTlt (T)

to compute the fraction of positive cells in the test
dataset

100
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The final estimate of the
fraction of positive cells in the
test dataset is:

0.4757 + 0.0176

0.9733

= 0.5068
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The Kolmogorov-Smirnov
Algorithm

This method is based on the Kolmogorof-Smirnov test to see if two
samples are drawn from the same distribution:

— Two datasets are given, one control and the other test, with n,,,,; and
Ntese SAMples respectively

— Calculate the KS statistic

NeontNtest
K = \/ Dmax

Neont T Neest

— Under the null hypothesis where the samples in both datasets are
drawn from the same distribution, K is governed by the Kolmogorov
distribution with

Py(x) =Pr{Kk <x}=1-2 2(—1)""‘1 exp(—2k?x?)
k=1
for large n ., and nypq;

— The null hypothesis is rejected if Py (K) > 1 — a for the observed K,
where a represents a desired level of statistical significance
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The Kolmogorov-Smirnov
Algorithm

For the toy example:
= MNcont = Ntest = 10000

- K= \/ “contTtest fy - =+/5000 - 0.4757 = 33.6371

Ncont+MNtest
- Px(33.6371) = 1 =» the P-value is practically zero!!
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The Kolmogorov-Smirnov
Algorithm

« Remarks:

— The Kolmogorov-Smirnov algorithm carries out a
statistical test to determine the confidence
interval at which two cell distributions are different

— It does not, in essence, delineate a region of
fluorescence intensities over which they differ

— On the other hand, it uses D, to determine the
confidence interval, that can be used to identify
the fraction of positive cells in the test dataset
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Summary

« Many different but related methods exist to predict the
fraction of positive cells in a test dataset in contrast to
a control dataset of all-negative cells

* While these methods compute parameters linked to
critical fluorescence intensity levels, they do not
directly delineate the regions in the fluorescence
iIntensity scale associated with the positive cells

— Though it is clear that they are the cells in the test dataset
with greater fluorescence intensity

* Regions of difference between the fluorescence
intensity distributions of two samples, or gates, can be
identified using the alternative method of probability
binning
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